Interoperability **Readiness Levels** ### Interoperability Readiness Levels - · Nine Levels of Interoperability - Inspired by Technology Readiness Levels and Reuse Readiness Levels Each interoperability level (IRL) represents an increased ability for a system to interoperate with other systems - Based on four key interoperability dimensions - Capability Enablement - Describes the overall capability enabled at a particular Interoperability Readiness Level - Key Interoperability Dimensions - Discovery - Access - Understanding - Data - · 'Bonus' Interoperability Dimension Standards (Individual, Organizational, Associational, National, International) - Key Characteristics - Degree of human intervention required Amount of custom coding vs. configuration - · Available on Google Docs - http://tinyurl.com/tiwg-irl #### High IRLs Extensive interoperability. Little human interpretation and intervention required. Simple configuration rather than custom coding. #### Low IRLs Little or no interoperability. Significant human interpretation and intervention required. Extensive custom coding. | | Capability
Enablement | Discovery | Access | Understanding | Data | Standards | |---------|---|---|---|---|--|---------------------------------| | Level 9 | Automatic discovery and incorporation of novel data and services into applications with no human intervention | Services discoverable in
global registries with
complete syntactic and
semantic information | Al capability. Completely automated mediation of services | Semantic agreement on content based upon universally accepted ontologies | Data, its quality, realms of applicability, etc. fully self-described both syntactically and semantically | International standards. | | Level 8 | Human-triggered incorporation of novel data and services into applications | Services discoverable in global registries of services with complete syntactic information | Discipline/Domain-specific
ontology support using
recognized semantic tools | Semantic agreement on content based upon community-accepted ontologies | Standard data types in syntactically self-describing formats, quality, applicability, etc. information partly semantically captured | | | Level 7 | Incorporation of novel data
and services into
applications with minimal
configuration | Services discoverable in community registries of services | Full registry support,
discoverable, machine
interpretable definitions,
standardized/recognized
data structures | Semantic agreement on content based upon ad hoc ontologies | Standard data types in
syntactically self-describing
formats, quality,
applicability, etc. information
not semantically captured | National standards. | | Level 6 | Incorporation of novel data and services into applications with substantial configuration | Common catalog protocols
with community vocabulary
at both directory and
inventory level, limited
registry support,
discoverable | Follows specification standards, supports recognized interface definition conventions (common vocab) human or machine interpreted | Semantic agreement on content based upon common vocabularies | Data in syntactically self-describing formats, some content info using community vocabularies | | | Level 5 | Incorporation of novel data
and services into
applications with minimal
custom code | Common catalog protocols
with some conventions at
directory and inventory level | Adherence to (documented) specification standards, distributed access providing platform independence (e.g. data type interoperability) | Semantic agreement on content based upon ad hoc community shared knowledge | Data in syntactically self-
describing formats, content
(I.e., semantics) info
available as free text | Associational standards. | | Level 4 | Programmatic access to data services from different sources via extensive custom code | Some common catalog conventions at directory (dataset) level | Documentation exists in common modern language(s) (no Latin), platform/language dependencies, distributed (non-standard) access | Semantic agreement on some of the content based upon ad hoc community shared knowledge | Data in documented formats with available IO routines and full content information available as free text | | | Level 3 | Programmatic use of data
from different sources via
extensive custom code | Catalog accessible but
undocumented and
changing. Manual search. | One-off specialized implementations (no standardization of API or functionality), poor documentation | Extensive human-human interaction required to gain full meaning of data | Data in documented formats with full content information available as free text | Organizational-level standards. | | Level 2 | Human use of data from
different sources using
different code for each | REST-style access to form interface (via scraping) | Proprietary and complicated
dependencies, strict
platform dependencies,
limited documentation, no
discovery (registry) | Some parts of data may be comparable to other data only through informal human to human interaction | Data in documented formats with little or no auxiliary content information available | | | Level 1 | Data from different sources cannot be used together | Probably none, hard coded
or inaccessible catalog
interface | Not modular components
(part of a larger application),
platform specific,
undocumented, no
distributed access,
closed/restricted source (not
open source) | Content of data is not directly comparable to any other data | Data in unknown or
undocumented formats with
little or no auxiliary content
information available | Individual standards. | TRL 9 TRL 8 TRL 7 TRL 6 ## **Technology Readiness Levels** - NASA Civil Space Technology Readiness Levels: taken from NASA's 1991 Integrated Technology Plan; outlines the relative maturity of a given technology as follows: - Basic Technology Research: - Level 1: Basic principles observed and reported Research to Prove Feasibility. Level 2: Etchnology concept and/or application formulated Level 3: Analytical and experimental critical function and/or characteristic proof of concept - Level 3: Analytical and experimental critical function and/or characteristic proof of concept Technology Development: Level 4: Component and/or breadboard validation in laboratory environment Technology Demonstration: Level 5: Component and/or breadboard validation in relevant environment Level 6: System/subeystem model or prototype demonstration in a relevant environment (ground or space) System/Subsystem Development: Level 7: System prototype demonstration in a space environment System Stept. Launch and Operations: Level 8: Actual system completed and "flight qualified" through test and demonstration (ground or space) Level 9: Actual system "flight proven" through successful mission operations